Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
ACS Omega ; 9(9): 10267-10275, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463250

RESUMO

One of the well-known postoperative complications that requires a number of prophylactic and curative treatments is infection. The implications of postsurgical infections are further exacerbated by the emergence of antibiotic-resistant strains. Reduced effectiveness of synthetic antibiotics has led to an interest in plant-based substances. Extracts obtained from Nigella sativa have been shown to possess effective anti-infectious agents against bacteria frequently seen in bone infections. In this study, a fiber-based bone scaffold containing polycaprolactone, poly(lactic acid), and hydroxyapatite with N. sativa oil at varying concentrations was developed. Solvent electrospinning was used to fabricate the fibers with the specified composition. According to FE-SEM analysis, fibers with average diameters of 751 ± 82, 1000 ± 100, 1020 ± 90, and 1223 ± 112 nm were formed and successful integration of N. sativa oil into the fiber's structure was confirmed via FTIR. Staphylococcus aureus showed moderate susceptibility against the fibers with a maximum inhibition zone diameter of 11.5 ± 1.6 mm. MTT assay analysis exhibited concentration-dependent cell toxicity against fibroblast cells. In short, the antibacterial fibers synthesized in this study possessed antibacterial properties while also allowing moderate accommodation of CDD fibroblast cells at low oil concentrations, which can be a potential application for bone healing and mitigating postsurgical infections.

2.
Eur J Med Chem ; 269: 116268, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460268

RESUMO

One of the biggest health challenges of today's world is the emergence of antimicrobial resistance (AMR), which renders conventional therapeutics insufficient and urgently demands the generation of novel antimicrobial strategies. Mycobacterium tuberculosis (M. tuberculosis), the pathogen causing tuberculosis (TB), is among the most successful bacteria producing drug-resistant infections. The versatility of M. tuberculosis allows it to evade traditional anti-TB agents through various acquired and intrinsic mechanisms, rendering TB among the leading causes of infectious disease-related mortality. In this context, researchers worldwide focused on establishing novel approaches to address drug resistance in M. tuberculosis, developing diverse alternative treatments with varying effectiveness and in different testing phases. Overviewing the current progress, this paper aims to briefly present the mechanisms involved in M. tuberculosis drug-resistance, further reviewing in more detail the under-development antibiotics, nanotechnological approaches, and natural therapeutic solutions that promise to overcome current treatment limitations.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Mycobacterium tuberculosis , Tuberculose , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Anti-Infecciosos/uso terapêutico
3.
Curr Treat Options Oncol ; 25(1): 97-126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224423

RESUMO

OPINION STATEMENT: Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management. The last decade screened literature evidenced an increasing interest in developing natural treatment alternatives based on beehive, plant extracts, pure vegetal compounds, and bacteriocins. Promising therapeutics can also be envisaged by involving nanotechnology due to either intrinsic biological activities or drug delivery properties of nanomaterials. Despite recent progress in the field of malignant wound care, the literature is still mainly based on in vitro and in vivo studies on small animal models, while the case reports and clinical trials (less than 10 and only one providing public results) remain scarce. Some innovative treatment approaches are used in clinical practice without prior extensive testing in fungating wound patients. Extensive research is urgently needed to fill this knowledge gap and translate the identified promising therapeutic approaches to more advanced testing stages toward creating multidimensional wound care strategies.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Dor , Odorantes , Controle de Infecções , Projetos de Pesquisa
4.
Biomedicines ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893145

RESUMO

The use of MAPLE synthesized thin films based on BG and VD3 for improving the osseointegration and corrosion protection of Ti-like implant surfaces is reported. The distribution of chemical elements and functional groups was shown by FTIR spectrometry; the stoichiometry and chemical functional integrity of thin films after MAPLE deposition was preserved, optimal results being revealed especially for the BG+VD3_025 samples. The morphology and topography were examined by SEM and AFM, and revealed surfaces with many irregularities, favoring a good adhesion of cells. The thin films' cytotoxicity and biocompatibility were evaluated in vitro at the morphological, biochemical, and molecular level. Following incubation with HDF cells, BG57+VD3_ 025 thin films showed the best degree of biocompatibility, as illustrated by the viability assay values. According to the LDH investigation, all tested samples had higher values compared to the unstimulated cells. The evaluation of cell morphology was performed by fluorescence microscopy following cultivation of HDF cells on the obtained thin films. The cultivation of HDF's on the thin films did not induce major cellular changes. Cells cultured on the BG57+VD3_025 sample had similar morphology to that of unstimulated control cells. The inflammatory profile of human cells cultured on thin films obtained by MAPLE was analyzed by the ELISA technique. It was observed that the thin films did not change the pro- and anti-inflammatory profile of the HDF cells, the IL-6 and IL-10 levels being similar to those of the control sample. The wettability of the MAPLE thin films was investigated by the sessile drop method. A contact angle of 54.65° was measured for the sample coated with BG57+VD3_025. Electrochemical impedance spectroscopy gave a valuable insight into the electrochemical reactions occurring on the surface.

5.
Environ Int ; 180: 108242, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816267

RESUMO

Urban wastewater treatment plants harbor a large collection of antibiotic resistant enteric bacteria. It is therefore reasonable to hypothesize that workers at such plants would possess a more diverse set of resistant enteric bacteria, compared to the general population. To address this hypothesis, we have compared the fecal microbiome and resistome of 87 workers at wastewater treatment plants (WWTPs) from Romania and the Netherlands to those of 87 control individuals, using shotgun metagenomics. Controlling for potential confounders, neither the total antibiotic resistance gene (ARG) abundance, nor the overall bacterial composition were significantly different between the two groups. If anything, the ARG richness was slightly lower in WWTP workers, and in a stratified analysis the total ARG abundance was significantly lower in Dutch workers compared to Dutch control participants. We identified country of residence, together with recent antibiotic intake in the Dutch population, as the largest contributing factors to the total abundance of ARGs. A striking side-finding was that sex was associated with carriage of disinfectant resistance genes, with women in both Romania and the Netherlands having significantly higher abundance compared to men. A follow up investigation including an additional 313 publicly available samples from healthy individuals from three additional countries showed that the difference was significant for three genes conferring resistance to chemicals commonly used in cosmetics and cleaning products. We therefore hypothesize that the use of cosmetics and, possibly, cleaning products leads to higher abundance of disinfectant resistance genes in the microbiome of the users. Altogether, this study shows that working at a WWTP does not lead to a higher abundance or diversity of ARGs and no large shifts in the overall gut microbial composition in comparison to participants not working at a WWTP. Instead, other factors such as country of residence, recent antibiotic intake and sex seem to play a larger role.


Assuntos
Desinfetantes , Microbiota , Purificação da Água , Humanos , Feminino , Águas Residuárias , Genes Bacterianos , Bactérias/genética , Antibacterianos/farmacologia , Antibacterianos/análise , Microbiota/genética
7.
Front Cell Infect Microbiol ; 13: 1181516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680749

RESUMO

Introduction: One of the promising leads for the rapid discovery of alternative antimicrobial agents is to repurpose other drugs, such as nonsteroidal anti-inflammatory agents (NSAIDs) for fighting bacterial infections and antimicrobial resistance. Methods: A series of new carbazole derivatives based on the readily available anti-inflammatory drug carprofen has been obtained by nitration, halogenation and N-alkylation of carprofen and its esters. The structures of these carbazole compounds were assigned by NMR and IR spectroscopy. Regioselective electrophilic substitution by nitration and halogenation at the carbazole ring was assigned from H NMR spectra. The single crystal X-ray structures of two representative derivatives obtained by dibromination of carprofen, were also determined. The total antioxidant capacity (TAC) was measured using the DPPH method. The antimicrobial activity assay was performed using quantitative methods, allowing establishment of the minimal inhibitory/bactericidal/biofilm eradication concentrations (MIC/MBC/MBEC) on Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) strains. Computational assays have been performed to assess the drug- and lead-likeness, pharmacokinetics (ADME-Tox) and pharmacogenomics profiles. Results and discussion: The crystal X-ray structures of 3,8-dibromocarprofen and its methyl ester have revealed significant differences in their supramolecular assemblies. The most active antioxidant compound was 1i, bearing one chlorine and two bromine atoms, as well as the CO2Me group. Among the tested derivatives, 1h bearing one chlorine and two bromine atoms has exhibited the widest antibacterial spectrum and the most intensive inhibitory activity, especially against the Gram-positive strains, in planktonic and biofilm growth state. The compounds 1a (bearing one chlorine, one NO2 and one CO2Me group) and 1i (bearing one chlorine, two bromine atoms and a CO2Me group) exhibited the best antibiofilm activity in the case of the P. aeruginosa strain. Moreover, these compounds comply with the drug-likeness rules, have good oral bioavailability and are not carcinogenic or mutagenic. The results demonstrate that these new carbazole derivatives have a molecular profile which deserves to be explored further for the development of novel antibacterial and antibiofilm agents.


Assuntos
Anti-Inflamatórios não Esteroides , Cloro , Bromo , Antioxidantes/farmacologia , Reposicionamento de Medicamentos , Anti-Inflamatórios , Carbazóis/farmacologia , Antibacterianos/farmacologia , Biofilmes
8.
Biomed Mater ; 18(5)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604153

RESUMO

Diabetic wounds are one of the most challenging clinical conditions in diabetes, necessitating the development of new treatments to foster healing and prevent microbial contamination. In this study, polyvinyl alcohol was used as a matrix polymer, and amoxicillin (AMX) and salicylic acid (SA) were selected as bioactive compounds with antimicrobial (with AMX) and anti-inflammatory action (with SA) to obtain innovative drug-loaded electrospun nanofiber patches for the management of diabetic wounds. Scanning electron microscope images revealed the uniform and beadless structure of the nanofiber patches. Mechanical tests indicated that AMX minimally increased the tensile strength, while SA significantly reduced it. The patches demonstrated effective antibacterial activity against both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) strains. The potential of these patches in the development of novel wound dressings is highlighted by the excellent biocompatibility with fibroblast cells maintained for up to 7 d.


Assuntos
Nanofibras , Infecção dos Ferimentos , Humanos , Ácido Salicílico , Amoxicilina , Álcool de Polivinil , Escherichia coli
9.
Front Microbiol ; 14: 1193907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293232

RESUMO

Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.

10.
Sci Total Environ ; 884: 163810, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127150

RESUMO

In the last decades, increased intakes of contaminants and the habitats' destruction have produced drastic changes in the aquatic ecosystems. The environmental contaminants can accumulate in aquatic organisms, leading to the disturbance of the antioxidant/prooxidant balance in fish. In this context, we evaluated the level of organic, inorganic and microbiological pollutants in four leisure lakes (Chitila, Floreasca, Tei and Vacaresti) from Bucharest, the largest city of Romania, in order to compare their effects on hepatopancreas and gills metabolism and antioxidant defense mechanisms in Carassius gibelio, the most known and widespread freshwater fish in this country. The lowest level of oxidative stress was recorded in the case of fish collected from the Vacaresti lake, a protected wetland area where aquatic organisms live in wild environmental conditions. In contrast, significant oxidative changes were observed in the hepatopancreas and gills of fish from the Chitila, Floreasca and Tei lakes, such as reduced glutathione S-transferase activity and glutathione level, and increased degree of lipid peroxidation, being correlated with elevated levels of pesticides (such as 2,4'-methoxychlor) and Escherichia coli load in these organs. Although different patterns of pollutants' accumulation were observed, no important interindividual variations in cytosine methylation degree were determined. In conclusion, the presence and concentrations of metals, pesticides and antibiotics varied with the analyzed tissue and sampling site, and were correlated with changes in the cellular redox homeostasis, but without significantly affecting the epigenetic mechanisms.


Assuntos
Cyprinidae , Microbiota , Praguicidas , Poluentes Químicos da Água , Animais , Lagos , Antioxidantes/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Cyprinidae/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Praguicidas/metabolismo , Brânquias/metabolismo
11.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175597

RESUMO

Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Romênia/epidemiologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/genética , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Acinetobacter baumannii/genética
12.
Front Cell Dev Biol ; 11: 1181764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228649

RESUMO

During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.

13.
Antibiotics (Basel) ; 12(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37237710

RESUMO

New N-acyl thiourea derivatives with heterocyclic rings have been synthesized by first obtaining isothiocyanate, which further reacted with a heterocyclic amine, characterized by (FT-IR, NMR spectroscopy and FT-ICR) and tested for their in vitro antimicrobial, anti-biofilm and antioxidant activities to obtain a drug candidate in a lead-optimization process. From the tested compounds, those bearing benzothiazole (1b) and 6-methylpyridine (1d) moieties revealed anti-biofilm activity against E. coli ATCC 25922 at MBIC values of 625 µg/mL. Compound 1d exhibited the highest antioxidant capacity (~43%) in the in vitro assay using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Considering the in vitro results, the highest anti-biofilm and antioxidant activities were obtained for compound 1d. Therefore, a reversed-phase high-performance liquid chromatography (RP-HPLC) method has been optimized and validated for the quantitative determination of compound 1d. The detection and quantitation limits were 0.0174 µg/mL and 0.0521 µg/mL, respectively. The R2 correlation coefficient of the LOQ and linearity curves were greater than 0.99, over the concentration range of 0.05 µg/mL-40 µg/mL. The precision and accuracy of the analytical method were within 98-102%, confirming that the method is suitable for the quantitative determination of compound 1d in routine quality control analyses. Evaluating the results, the promising potential of the new N-acyl thiourea derivatives bearing 6-methylpyridine moiety will be further investigated for developing agents with anti-biofilm and antioxidant activities.

14.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108183

RESUMO

The unprecedented increase in microbial resistance rates to all current drugs raises an acute need for the design of more effective antimicrobial strategies. Moreover, the importance of oxidative stress due to chronic inflammation in infections with resistant bacteria represents a key factor for the development of new antibacterial agents with potential antioxidant effects. Thus, the purpose of this study was to bioevaluate new O-aryl-carbamoyl-oxymino-fluorene derivatives for their potential use against infectious diseases. With this aim, their antimicrobial effect was evaluated using quantitative assays (minimum inhibitory/bactericidal/biofilms inhibitory concentrations) (MIC/MBC/MBIC), the obtained values being 0.156-10/0.312-10/0.009-1.25 mg/mL), while some of the involved mechanisms (i.e., membrane depolarization) were investigated by flow cytometry. The antioxidant activity was evaluated by studying the scavenger capacity of DPPH and ABTS•+ radicals and the toxicity was tested in vitro on three cell lines and in vivo on the crustacean Artemia franciscana Kellog. The four compounds derived from 9H-fluoren-9-one oxime proved to exhibit promising antimicrobial features and particularly, a significant antibiofilm activity. The presence of chlorine induced an electron-withdrawing effect, favoring the anti-Staphylococcus aureus and that of the methyl group exhibited a +I effect of enhancing the anti-Candida albicans activity. The IC50 values calculated in the two toxicity assays revealed similar values and the potential of these compounds to inhibit the proliferation of tumoral cells. Taken together, all these data demonstrate the potential of the tested compounds to be further used for the development of novel antimicrobial and anticancer agents.


Assuntos
Anti-Infecciosos , Antioxidantes , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Candida albicans , Biofilmes , Testes de Sensibilidade Microbiana
15.
Pathogens ; 12(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111495

RESUMO

A current major healthcare problem is represented by antibiotic resistance, mainly due to multidrug resistant (MDR) Gram negative bacilli (GNB), because of their extended spread both in hospital facilities and in the community's environment. The aim of this study was to investigate the virulence traits of Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa MDR, XDR, and PDR strains isolated from various hospitalized patients. These GNB strains were investigated for the presence of soluble virulence factors (VF), such as hemolysins, lecithinase, amylase, lipase, caseinase, gelatinase, and esculin hydrolysis, as well as for the presence of virulence genes encoding for VF involved in adherence (TC, fimH, and fimA), biofilm formation (algD, ecpRAB, mrkA, mrkD, ompA, and epsA), tissue destruction (plcH and plcN), and in toxin production (cnfI, hlyA, hlyD, and exo complex). All P. aeruginosa strains produced hemolysins; 90% produced lecithinase; and 80% harbored algD, plcH, and plcN genes. The esculin hydrolysis was detected in 96.1% of the K. pneumoniae strains, whereas 86% of them were positive for the mrkA gene. All of the A. baumannii strains produced lecithinase and 80% presented the ompA gene. A significant association was found between the number of VF and the XDR strains, regardless of the isolation sources. This study opens new research perspectives related to bacterial fitness and pathogenicity, and it provides new insights regarding the connection between biofilm formation, other virulence factors, and antibiotic resistance.

16.
Pharmaceutics ; 15(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111781

RESUMO

Novel biomaterials with promising bone regeneration potential, derived from rich, renewable, and cheap sources, are reported. Thus, thin films were synthesized from marine-derived (i.e., from fish bones and seashells) hydroxyapatite (MdHA) by pulsed laser deposition (PLD) technique. Besides the physical-chemical and mechanical investigations, the deposited thin films were also evaluated in vitro using dedicated cytocompatibility and antimicrobial assays. The morphological examination of MdHA films revealed the fabrication of rough surfaces, which were shown to favor good cell adhesion, and furthermore could foster the in-situ anchorage of implants. The strong hydrophilic behavior of the thin films was evidenced by contact angle (CA) measurements, with values in the range of 15-18°. The inferred bonding strength adherence values were superior (i.e., ~49 MPa) to the threshold established by ISO regulation for high-load implant coatings. After immersion in biological fluids, the growth of an apatite-based layer was noted, which indicated the good mineralization capacity of the MdHA films. All PLD films exhibited low cytotoxicity on osteoblast, fibroblast, and epithelial cells. Moreover, a persistent protective effect against bacterial and fungal colonization (i.e., 1- to 3-log reduction of E. coli, E. faecalis, and C. albicans growth) was demonstrated after 48 h of incubation, with respect to the Ti control. The good cytocompatibility and effective antimicrobial activity, along with the reduced fabrication costs from sustainable sources (available in large quantities), should, therefore, recommend the MdHA materials proposed herein as innovative and viable solutions for the development of novel coatings for metallic dental implants.

17.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901750

RESUMO

Due to the increase in the life span and mobility at older ages, the number of implanted prosthetic joints is constantly increasing. However, the number of periprosthetic joint infections (PJIs), one of the most severe complications after total joint arthroplasty, also shows an increasing trend. PJI has an incidence of 1-2% in the case of primary arthroplasties and up to 4% in the case of revision operations. The development of efficient protocols for managing periprosthetic infections can lead to the establishment of preventive measures and effective diagnostic methods based on the results obtained after the laboratory tests. In this review, we will briefly present the current methods used in PJI diagnosis and the current and emerging synovial biomarkers used for the prognosis, prophylaxis, and early diagnosis of periprosthetic infections. We will discuss treatment failure that may result from patient factors, microbiological factors, or factors related to errors during diagnosis.


Assuntos
Artrite Infecciosa , Artroplastia de Quadril , Artroplastia do Joelho , Infecções Relacionadas à Prótese , Humanos , Infecções Relacionadas à Prótese/etiologia , Líquido Sinovial , Biomarcadores , Artroplastia do Joelho/efeitos adversos , Artroplastia de Quadril/efeitos adversos , Artrite Infecciosa/diagnóstico
18.
Antibiotics (Basel) ; 12(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830282

RESUMO

The essential oil of Achillea setacea was isolated by hydrodistillation and characterized by GC-MS. The antioxidant and antimicrobial activity of Achillea setacea essential oil was evaluated, as well as its biocompatibility (LDH and MTT methods). DPPH, FRAP, and CUPRAC methods were applied for antioxidant activity evaluation, while qualitative and quantitative assays (inhibition zone diameter, minimum inhibitory concentration, and minimum fungicidal concentration), NO release (by nitrite concentration determination), and microbial adhesion capacity to the inert substrate (the biofilm microtiter method) were used to investigate the antimicrobial potential. A total of 52 compounds were identified by GC-MS in A. setacea essential oil, representing 97.43% of the total area. The major constituents were borneol (32.97%), 1,8-cineole (14.94%), camphor (10.13%), artemisia ketone (4.70%), α-terpineol (3.23%), and γ-eudesmol (3.23%). With MICs ranging from 0.78 to 30 µg/mL, the A. setacea essential oil proved to inhibit the microbial adhesion and induce the NO release. To the best of our knowledge, the present study reports for the first time the antimicrobial activity of A. setacea EO against clinically and biotechnologically important microbial strains, such as Shigella flexneri, Listeria ivanovii, L. innocua, Saccharomyces cerevisiae, Candida glabrata, Aspergillus niger, Rhizopus nigricans, Cladosporium cladosporioides, and Alternaria alternata, demonstrating its antimicrobial applications beyond the clinical field.

20.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769008

RESUMO

To improve their biological activity, complexes [Cu(bipy)(dmtp)2(OH2)](ClO4)2·dmtp (1) and [Cu(phen)(dmtp)2(OH2)](ClO4)2·dmtp (2) (bipy 2,2'-bipyridine, phen: 1,10-phenantroline, and dmtp: 5,7-dimethyl-1,2,4-triazolo [1,5-a]pyrimidine) were included in ß-cyclodextrins (ß-CD). During the inclusion, the co-crystalized dmtp molecule was lost, and UV-Vis spectra together with the docking studies indicated the synthesis of new materials with 1:1 and 1:2 molar ratios between complexes and ß-CD. The association between Cu(II) compounds and ß-CD has been proven by the identification of the components' patterns in the IR spectra and powder XRD diffractograms, while solid-state UV-Vis and EPR spectra analysis highlighted a slight modification of the square-pyramidal stereochemistry around Cu(II) in comparison with precursors. The inclusion species are stable in solution and exhibit the ability to scavenge or trap ROS species (O2·- and HO·) as indicated by the EPR experiments. Moreover, the two inclusion species exhibit anti-proliferative activity against murine melanoma B16 cells, which has been more significant for (2)@ß-CD in comparison with (2). This behavior is associated with a cell cycle arrest in the G0/G1 phase. Compared with precursors, (1a)@ß-CD and (2a)@ß-CD exhibit 17 and 26 times more intense activity against planktonic Escherichia coli, respectively, while (2a)@ß-CD is 3 times more active against the Staphylococcus aureus strain.


Assuntos
Cobre , beta-Ciclodextrinas , Animais , Camundongos , Cobre/química , Cristalografia por Raios X , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/química , Antibacterianos/farmacologia , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...